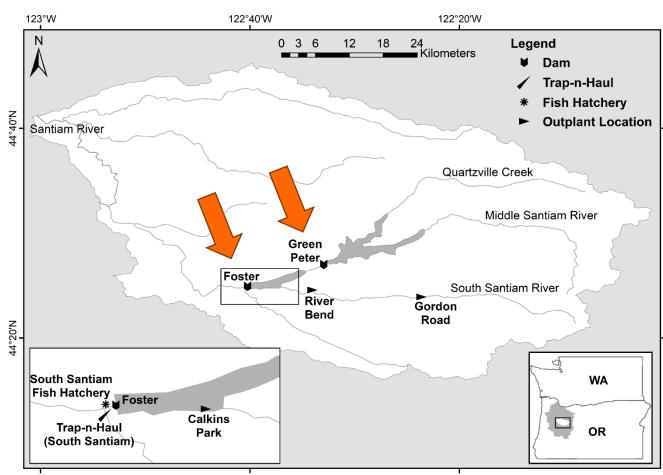

Population Productivity of Spring Chinook Salmon Reintroduced above Foster Dam on the South Santiam River

Kathleen O'Malley, Andrew Black, Marc Johnson, Dave Jacobson

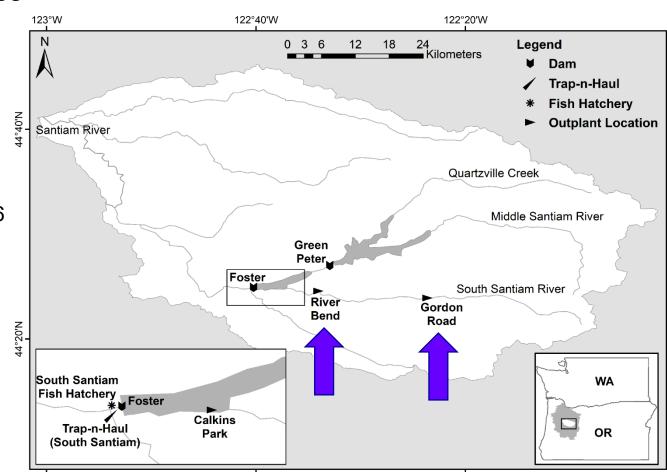


South Santiam Spring Chinook Salmon

Upper Willamette River ESU

Threatened

Barriers to dispersal
 Foster Dam
 Green Peter Dam

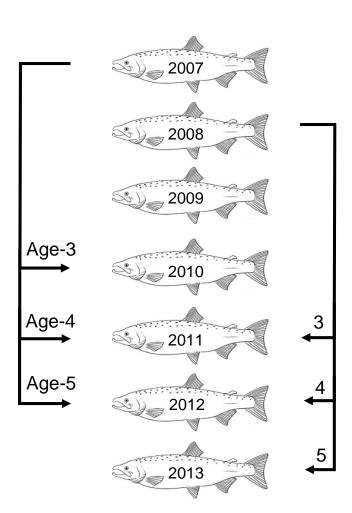


South Santiam Spring Chinook Salmon

Upper Willamette River ESU

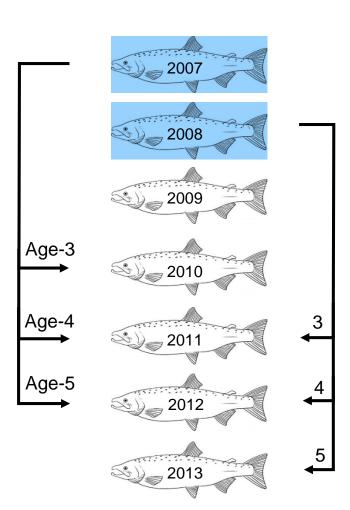
Threatened

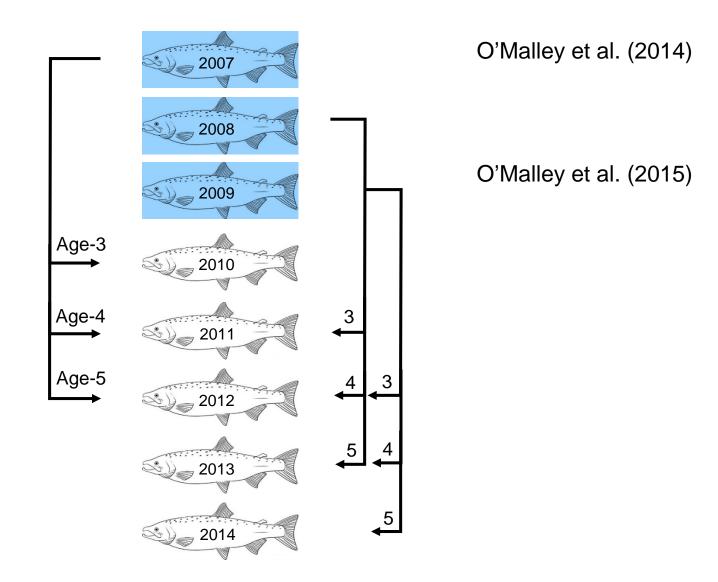
- Barriers to dispersal
 Foster Dam
 Green Peter Dam
- Outplanting began in 1996
 Hatchery-origin (HOR)
- Since 2009, release only Natural-origin (NOR)

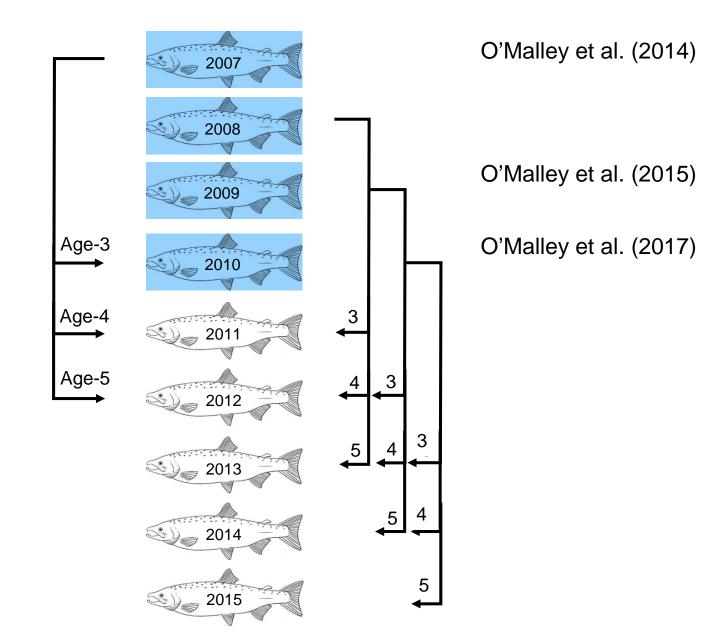


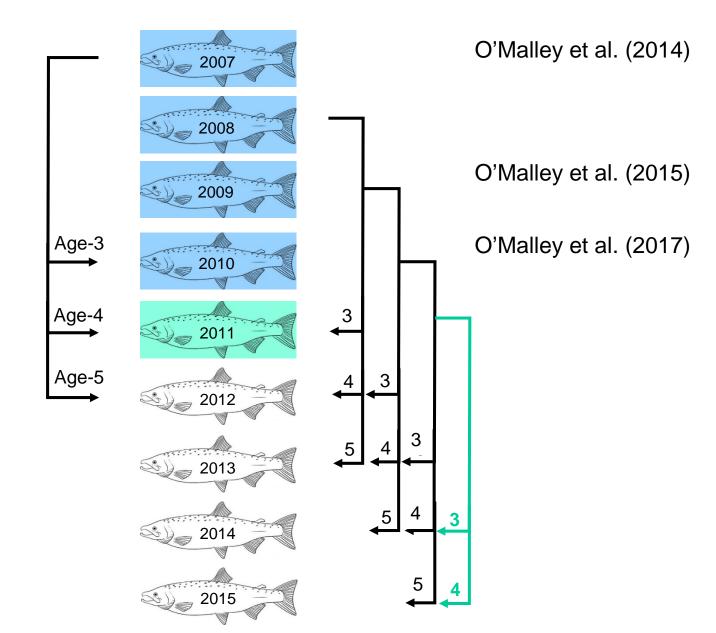
Starting in 2007, a fin clip for genetic analysis

Identify parent-offspring relationships




O'Malley et al. (2014)


Identify parent-offspring relationships



O'Malley et al. (2014)

Objectives

- Assign the 2015 returning adult offspring (live/carcass) to putative parents
 - reintroduced above Foster Dam in 2010 and 2011
 - or sampled as carcasses below Foster Dam in 2011
- Estimate female cohort replacement rate (CRR) for salmon reintroduced in 2010
- Estimate the fitness of salmon reintroduced above Foster Dam in
 - 2010 (total lifetime fitness: age-3, age-4, and age-5 progeny)
 - 2011 (preliminary fitness: age-3 and age-4 progeny only)
- Estimate the fitness of salmon below Foster Dam (carcass samples) in
 - 2011 (preliminary fitness: age-3 and age-4 progeny only)

Spring Chinook Genetic Pedigree Samples

Above Foster Dam

	Year	N
Parent	2010	700
Parent	2011	1202
Offspring	2013	940
Offspring	2014	411
Offspring	2015	598

Below Foster Dam

	Year	N
Parent	2010	NA
Parent	2011	66
Offspring	2013	80
Offspring	2014	87
Offspring	2015	79

Spring Chinook Genetic Pedigree Samples

Above Foster Dam

Below Foster Dam

	Year	N
Parent	2010	700
Parent	2011	1202

	Year	N
Parent	2010	NA
Parent	2011	66

Offspring 2015 598

Offspring 2015 79

Spring Chinook Genetic Pedigree Samples

Above Foster Dam

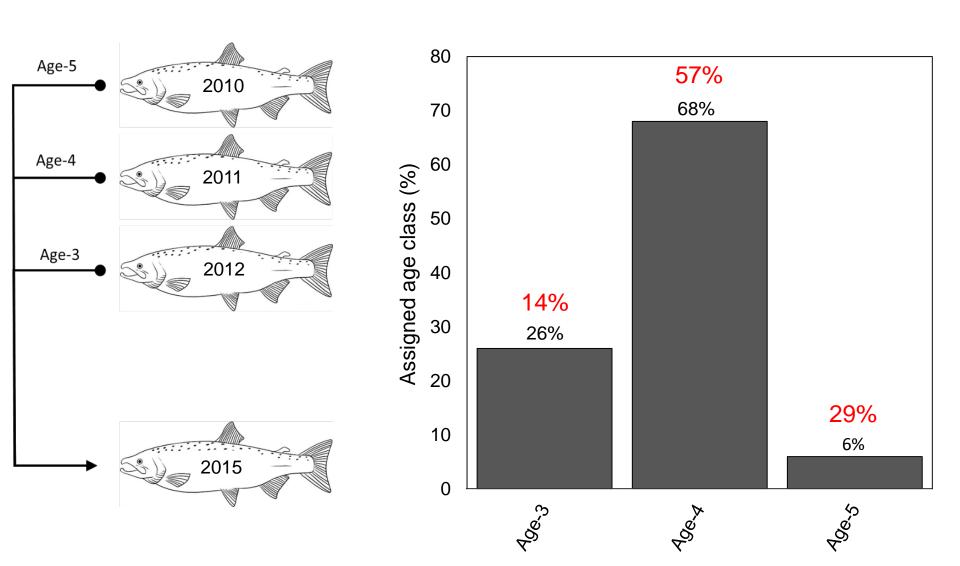
Re	10W	Foster	Dam
		1 03151	Dani

	Year	N
Parent	2010	700
Parent	2011	1202

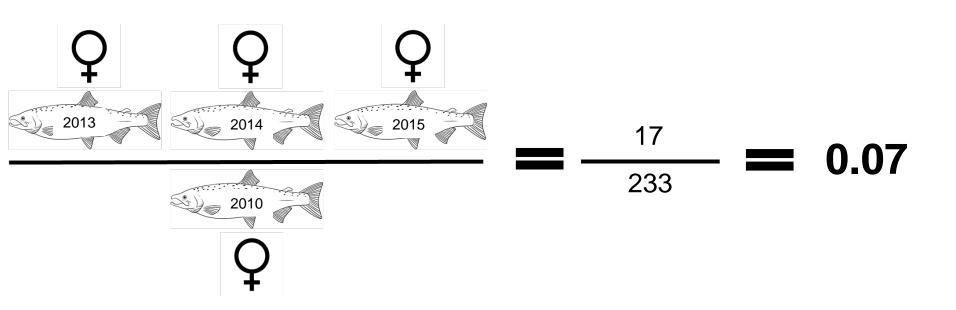
	Year	N
Parent	2010	NA
Parent	2011	66

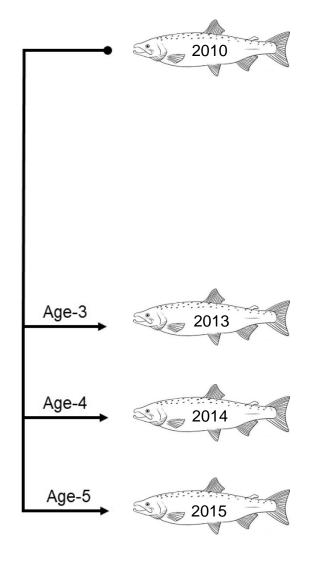
Offspring	2015	598
-----------	------	-----

Offspring 2015 79

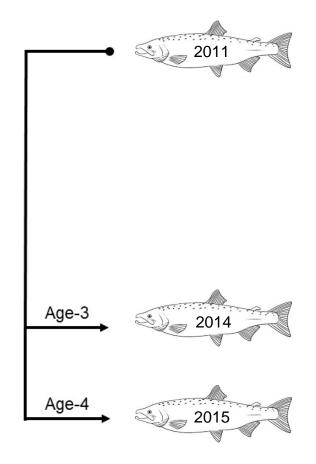

Results: Assignment Rates

- 20% (138/677) of the 2015 adult returns assigned to parents
 - 89% (123/138) to salmon reintroduced above Foster in 2010 and 2011
 - 11% (15/138) to carcasses sampled below Foster in 2011



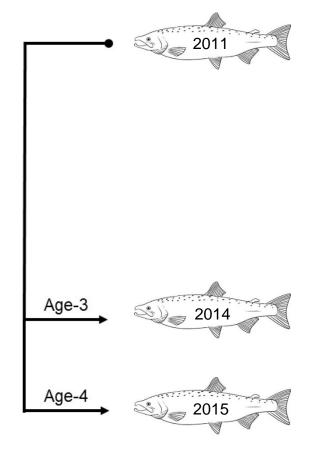

Results: Age Structure of the 2015 Returns

Results: Female Replacement Rate for the 2010 Cohort


Results: Total Lifetime Fitness of Salmon Reintroduced in 2010

 Only 9% (63/700) produced at least one adult return to the South Santiam River during 2013-2015

Year	Sex	N	Mean	SD	Range
2010	М	467	0.10	0.43	0 - 3
	F	233	0.19	0.63	0 - 5


Results: Preliminary Fitness of Salmon Reintroduced in 2011

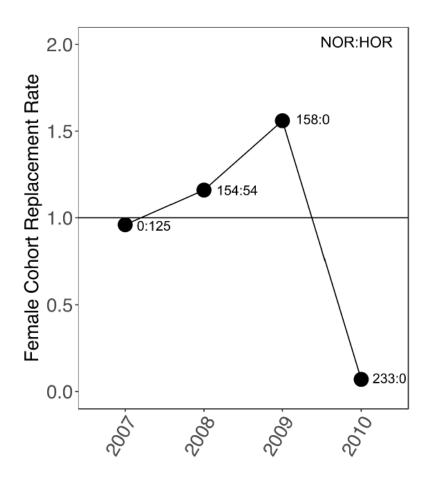
 Only 7% (90/1202) produced at least one adult return to the South Santiam River during 2013-2015

Year	Sex	N	Mean	SD	Range
2011	M	676	0.13	0.66	0 - 9
	F	526	0.16	0.81	0 - 11

Results: Preliminary Fitness of Salmon Below Foster Dam in 2011

 17% (11/66) produced at least one adult return to the South Santiam River in 2014 and 2015

	Year	Sex	N	Mean	SD	Range
4	2011	М	27	0.29	0.60	0 - 2
		F	39	0.20	0.69	0 - 4


Summary and Discussion

- In 2015, 20% (138/677) of the adult salmon assigned as offspring compared to 44% (171/390) of the adult returns that assigned in 2014
 - Unassigned salmon could be offspring of salmon that spawned below Foster Dam in 2010 and 2011

- In 2015, only 6% of the returns were age-5 (i.e. offspring of 2010 parents) opposed to the expected 29% within the sub-basin
 - Provides support of an above-dam 2010 brood failure due to a high water event

Summary and Discussion

The 2010 female cohort replacement rate was 0.07

Summary and Discussion

 TLF estimates for salmon reintroduced in 2010 were low with only 9% of reintroduced salmon producing ≥1 adult return to the South Santiam River in 2013-2015

In contrast, 48% of reintroduced salmon in 2009 produced
 ≥1 adult return

 Decreased trap efficiency in 2014 and 2015 may have resulted in a lower sampling rate of adult offspring from previously reintroduced salmon

Future Research

- Disentangle environment (e.g. flood events) from origin (NOR vs. HOR) effects on the productivity of salmon reintroduced above Foster Dam
 - Only 4 data points:

Year	Releases (NOR/HOR)	Genotyped	M:F	Female CRR
2007	18/385	252	1:1	0.96
2008	163/527	659	2:1	1.16
2009	434/0	412	1.6:1	1.55
2010	705/0	700	2:1	0.07

Future Research

- Disentangle environment (e.g. flood events) from origin (NOR vs. HOR) effects on the productivity of salmon reintroduced above Foster Dam
 - Only 4 data points:

Year	Releases (NOR/HOR)	Genotyped	M:F	Female CRR
2007	18/385	252	1:1	0.96
2008	163/527	659	2:1	1.16
2009	434/0	412	1.6:1	1.55
2010	705/0	700	2:1	0.07
2011	1202/0	1202	1.2:1	?

Preliminary fitness estimates for salmon reintroduced in 2011 are low

Future Research

- In 2011, only 7% (90/1202) of reintroduced salmon produced age-3 or age-4 adult offspring
 - In comparison, 8% (58/700) of reintroduced salmon in 2010 produced age-3 or age-4 adult offspring
 - Possible reduced trap efficiency in 2014 and 2015 contributed to downwardly biased fitness estimates

Additional years of pedigree analysis are needed to test this
hypothesis and determine if trap modifications or operations at
Foster Dam have resulted in increased sampling of adult offspring

Acknowledgements

- Rich Piaskowski, USACE
- Cameron Sharpe, ODFW
- ODFW field staff

										Y	ear									
Ecosystem Indicators	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
PDO	17	_		12	7	10	11	4.5	12		F		1.4		2	8	10	20	10	10
(Sum Dec-March)	17	6	3	12	7	19	11	15	13	9	5	1	14	4	2	8	10	20	18	16
PDO (Sum May-Sept)	10	4	6	5	11	16	15	17	12	13	2	9	7	3	1	8	18	20	19	14
ONI	7		-																	
(Average Jan-June)	19	1	1	6	13	15	14	16	8	11	3	10	17	4	5	7	9	18	20	12
(in one go a mine)																				
46050 SST					100		100	100	100	100								2-2		2
(°C; May-Sept)	16	9	3	4	1	8	20	15	5	17	2	10	7	11	12	13	14	19	18	6
Upper 20 m T (°C; Nov-Mar)	19	11	8	10	6	14	15	12	13	5	1	9	16	4	3	7	2	20	18	17
Upper 20 m T						1														
(°C; May-Sept)	16	12	14	4	1	3	20	18	7	8	2	5	13	10	6	17	19	9	15	11
(°C; May-Sept) Deep temperature																				
(°C; May-Sept)	20	6	8	4	1	10	12	16	11	5	2	7	14	9	3	15	19	18	13	17
Deep salinity				-		- 1														
(May-Sept)	19	3	9	4	5	16	17	10	7	1	2	14	18	13	12	11	20	15	8	6
() septi																				
Copepod richness anom.									15000						- I				الساري	
(no. species; May-Sept)	18	2	1	7	6	13	12	17	15	10	8	9	16	4	5	3	11	19	20	14
N. copepod biomass anom.																			y.	
(mg C m ⁻³ ; May-Sept)	18	13	9	10	3	15	12	19	14	11	6	8	7	1	2	4	5	16	20	17
S. copepod biomass anom.																				
(mg C m ⁻³ ; May-Sept)	20	2	5	4	3	13	14	19	12	10	1	7	15	9	8	6	11	17	18	16
Biological transition																				
(day of year)	17	8	5	7	9	14	13	18	12	2	1	3	15	6	10	4	11	20	20	16
Ichthyoplankton biomass																				
(log (mg C 1000 m ⁻³); Jan-Mar)	20	11	3	7	9	18	17	13	16	15	2	12	4	14	10	8	19	5	6	1
Ichthyoplankton community																				
index (PCO axis 1 scores; Jan-Mar)	9	13	1	6	4	10	18	16	3	12	2	14	15	11	5	7	8	17	20	19
Chinook salmon juvenile								- 1				100				1				
catches (no. km ⁻¹ ; June)	18	4	5	15	8	12	16	19	11	9	1	6	7	14	3	2	10	13	17	20
Coho salmon juvenile					1	- 7														
	18	7	12	5	6	2	15	19	16	4	3	9	10	14	17	1	11	8	13	20
catches (no. km ⁻¹ ; June)																1				
	477.4	7.0				46.	45.5	46.5	40.0	0.0		0.0	45.5	0.0			45.5	45.0	46.	45.5
Mean of ranks	17.1	7.0	5.8	6.9	5.8	12.4	15.1	16.2	10.9	8.9	2.7	8.3	12.2	8.2	6.5	7.6	12.3	15.9	16.4	13.9
Rank of the mean rank	20	6	2	5	2	14	16	18	11	10	1	9	12	8	4	7	13	17	19	15
Ecosystem Indicators not include	d in the	mean c	of rank	s or sta	tistical	analyse	s													
Physical Spring Trans.	3	7	19	16	4	12	14	20	12	1	6	2	8	11	17	9	18	10	5	15
UI based (day of year)	3	/	19	10	4	12	14	20	12	1	0	2	8	11	17	9	19	10	3	12
Physical Spring Trans.	19	3	13	8	5	12	14	20	6	9	1	9	17	3	11	2	15	7	16	18
Hydrographic (day of year)	13	3	13	0	,	12	14	20	3	3	1	9	17	3	11	-	13		10	10
Upwelling Anomaly	9	3	16	5	8	13	12	20	9	4	6	7	14	16	14	11	18	1	2	19
(April-May)	,	J	10	,	0	15	12	-20			-		14	10	14	11	10		-	17
Length of Upwelling Season	6	2	18	11	1	13	9	20	5	3	8	3	15	17	15	14	19	10	7	12
UI based (days)					-															
SST NH-5	9	6	5	4	1	3	20	16	10	18	2	19	11	7	14	13	15	12	17	8
(°C; May-Sept)																				
Copepod Community Index	19	3	5	7	1	13	14	17	15	10	2	6	12	9	8	4	11	18	20	16
(MDS axis 1 scores)																				
Coho Juv Catches	11	2	1	4	3	6	12	14	8	9	7	15	13	5	10	NA	NA	NA	NA	NA
(no. fish km ⁻¹ ; Sept)																				

WFSR	Project	Dates	Reports
2014	South Santiam Genetic Pedigree	2007-2012	
2015	South Santiam Genetic Pedigree	2007-2013	O'Malley et al. (2014)
2016	South Santiam Genetic Pedigree	2007-2014	O'Malley et al. (2015)
	North Santiam Genetic Pedigree	2007-2014	O'Malley et al. (2015)
2017	North Santiam Genetic Pedigree	2007-2015	O'Malley et al. (2017)
2018	South Santiam Genetic Pedigree	2007-2015	O'Malley et al. (2017)
	Fall Creek Genetic Pedigree	2011-2015	O'Malley et al. (2017)

Year	Releases (NOR/HOR)	Genotyped	M:F	Female CRR
2007	18/385	252	1:1	0.96
2008	163/527	659	2:1	1.16
2009	434/0	412	1.6:1	1.55
2010	705/0	700	2:1	0.07
2011	1202/0	1202	1.2:1	?

Spring Chinook Salmon Genetic Samples

Above Foster Dam

	Year	N
Parent	2010	705
Parent	2011	1210
Offspring	2013	940
Offspring	2014	411
Offspring	2015	598